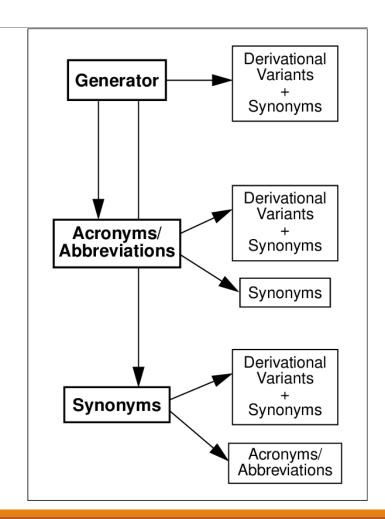
Entity Extraction for Clinical Notes, a Comparison Between MetaMap and Amazon Comprehend Medical

FATEMEH SHAH-MOHAMMADI, WANTING CUI, JOSEPH FINKELSTEIN ICAHN SCHOOL OF MEDICINE AT MOUNT SINAI NEW YORK, NY

Overview

- Why is Entity Extraction needed?
- Clinical Entity Extraction Tools:
 - MetaMap (MM)
 - Amazon Comprehend Medical (ACM)
- Dataset
- Evaluation Metrics
- Results
- Discussion
- Conclusion

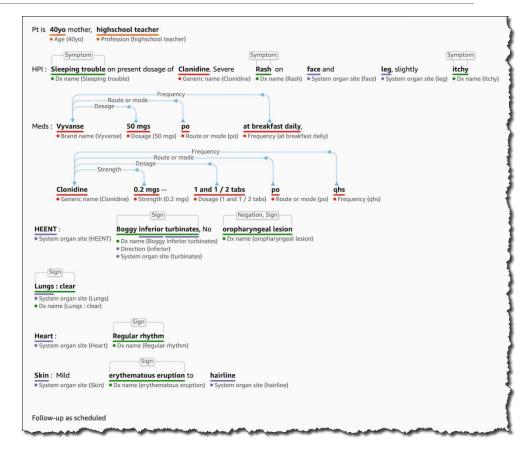
Why is Entity Extraction needed?


- Clinical Notes recorded in unstructured format
- Clinical Notes contain vast amount of information
- Information needs to be extracted for further utilization and analysis in daily healthcare setting
- Extracted information also form basis for other tasks (disease correlation and classification)

Tools: MetaMap (MM)

A rule-based entity extraction tool

- Developed by National Library of Medicine (NLM)
- Maps biomedical texts to UMLS concepts
- Uses hybrid approach: NLP, computational linguistic techniques and knowledge-intensive approach



Tools: Amazon Comprehend Medical (ACM)

A deep neural network-based entity extraction tool

Developed by Amazon Web Service (AWS)

 Uses deep learning based system (Long Short Term Memory (LSTM) network and Transfer Learning)

Dataset

The 2014 i2b2 heart disease and its associated risk factors identification dataset

Consists of 521 medical records with distribution of 8 disease risk factor categories and 38 associated indicators

Category		
Hypertension		
Hyperlipidemia —	Ind	licator
Diabetes	Hy	perlipidemia
Obese	Dy	slipidemia
Coronary Artery Disease (CAD)	Ну	percholesterolemia
Medication	Hig	h Cholesterol

Evaluation Metrics

- Expert annotation considered as a gold standard for evaluation
- Data cleaning pipeline:
 - Records in XML format
 - Separated actual narrative text from the annotations
 - Imported annotations into a relational database
- Evaluation metrics: Recall, Precision, and F-score

id	start	end	text	tag
MO	1339	1346		MEDICATI ON
M3	1400	1407		MEDICATI ON
M6	1272	1275		MEDICATI ON
M9	1174	1180	PLAVIX	MEDICATI ON

Results

30 entities has been selected for comparison

Entities annotated by			Evaluation			
experts and				ACM		
frequency of occurrences		Ρ	F	R	Ρ	F
Hypertension (264)		0.74	0.85	1	0.93	0.96
Hypertensive (14)		1	0.44	1	0.68	0.76
htn (352)	1	0.78	0.88	1	0.8	0.89
Hyperlipidemia (166)	1	0.59	0.74	1	0.86	0.92
Dyslipidemia (24)		0.69	0.81	1	0.86	0.92
Hypercholesterolemia (3)		0.66	0.8	1	0.98	0.99
High Cholesterol (12)		0.67	0.8	1	0.92	0.96
Diabetes Mellitus (4)	0.75	1	0.86	1	1	1
Diabetic (17)	0.51	1	0.69	1	0.59	0.74
DM (268)	1	0.94	0.97	1	0.92	0.96
Insulin Dependent Diabetes Mellitus (1)	1	1	1	1	1	1
Non Insulin Dependent Diabetes Mellitus (1)		1	1	1	1	1

Results

	MM			ACM		
Obesity (70)	1	0.75	0.85	1	0.96	0.98
Morbid Obesity (13)	1	0.75	0.87	1	0.69	0.81
Coronary Artery Disease (104)	1	0.71	0.83	1	0.89	0.94
Coronary Artery Bypass Surgery (7)	0.72	1	0.83	0.57	1	0.73
Myocardial Infarction (41)	1	0.8	0.89	1	0.76	0.86
MI (68)	0.55	1	0.71	1	0.68	0.81
Chest Pressure (7)	1	1	1	1	0.47	0.63
Zestril (56)	1	0.53	0.76	1	0.81	0.9
Lipitor (201)	1	0.64	0.78	1	0.91	0.95
Verapamil (19)	1	0.79	0.88	1	1	1
Beta-Blocker (26)	0.39	1	0.56	0.77	1	0.87
AVERAGE	0.88	0.83	0.82	0.97	0.86	0.90

ACM resulted in better performance in comparison with MM with 10% higher average recall, 4% higher average precision, and 10% higher average F-score.

Discussion

Poor recall performance of MM: stems from its inability in identifying multi word phrases as concepts, unless exact matches can be found in the dictionary.

ACM is a neural network-based tool, its training dataset included a wider range of vocabularies.

	Entities annotated				
 Tag name	by experts	MM	ACM		
	and frequency of				
	occurrences		R	Ρ	F
Hyperlipid					
emia	High Chol (1)	nan	1	1	1
	Increased				
	Cholesterol (1)	nan	1	1	1
	Insulin Dependent				
Diabetes	Diabetes (1)	nan	nan	nan	nan
	Insulindependent				
	Diabetes (5)	nan	nan	nan	nan
	Insulin Requiring				
	Diabetes (1)	nan	nan	nan	nan
	Morbidly Obese				
Obese	(7)	nan	1	1	1
	Severely Obese				
	(2)	nan	nan	nan	nan

Conclusion

Need for automated entity extraction tools

 Two such tools: MetaMap and Amazon Comprehend Medical (with different computational capability)

ACM resulted in better performance in comparison with MM with 10% higher average recall, 4% higher average precision, and 10% higher average F-score.

ACM is a neural network-based tool, its training dataset included a wider range of vocabularies.

Future use: Amazon Comprehend Medical

Thank you

00